Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 104(7): 7794-7807, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33865595

RESUMO

This study investigated the use of K2CO3 as dietary buffer to prevent or to recover from low milk fat production when early-lactating dairy goats are fed a high-starch, low-fiber (HSLF) diet. At kidding, 30 Alpine goats housed in pens with Calan gate feeders received a total mixed ration with a forage-to-concentrate ratio of 55:45 on a dry matter (DM) basis for a baseline period of 27 ± 4 d. Goats (milk yield, 4.14 ± 0.88 kg/d; milk fat, 4.28 ± 0.52%; mean ± SD) were then assigned to 1 of 10 blocks according to parity (first vs. second or more) and milk fat concentration, and fed a HSLF diet containing 45% forages and 55% concentrates for 2 experimental periods of 28 d. Treatments were identified as (1) control, in which the HSLF diet was fed throughout both periods; (2) preventive, in which the HSLF diet supplemented with K2CO3 (1.6% of DM) was fed during both periods; and (3) recovery, in which the HSLF diet was fed during the first period (P1) and the HSLF diet supplemented with K2CO3 was fed during the second period (P2). Data from P1 and P2 were analyzed separately. In P1, preplanned contrasts were used to evaluate the preventive effect of K2CO3 (control and recovery, both groups receiving the same diet during this period, vs. preventive), and in P2, to assess the potential of K2CO3 to alleviate an already existing state of low milk fat (control vs. recovery and preventive vs. recovery). Feeding the HSLF diet in P1 moderately decreased milk fat concentration (-16%) and yield (-13%) as compared with baseline. Dietary addition of K2CO3 decreased DM intake by 12 and 14% in P1 and P2, respectively. Ruminal pH was not different among treatments. There was also no significant difference in milk yield (4.13 and 3.71 kg/d on average in P1 and P2, respectively) for any tested contrasts. In P1, milk fat concentration and yield did not differ among goats fed control (3.58% and 151 g/d, respectively) and preventive (3.67% and 148 g/d, respectively) diets. In P2, milk fat concentration and yield did not differ among goats fed the control diet (3.38% and 137 g/d, respectively), and diets where K2CO3 was used as preventive (3.44% and 126 g/d, respectively) or recovery treatment (3.25% and 113 g/d, respectively). Supplementing a high-concentrate diet with 1.6% K2CO3 was therefore not effective in either preventing or suppressing already existing conditions of low milk fat production in dairy goats.


Assuntos
Lactação , Leite , Ração Animal/análise , Animais , Carbonatos , Dieta/veterinária , Suplementos Nutricionais , Feminino , Cabras , Potássio , Rúmen , Amido
2.
J Anim Sci ; 93(11): 5355-66, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26641055

RESUMO

Microbial protein synthesis in the rumen would be optimized when dietary carbohydrates and proteins have synchronized rates and extent of degradation. The aim of this study was to evaluate the effect of varying ruminal degradation rate of energy and nitrogen sources on intake, nitrogen balance, microbial protein yield, and kinetics of nutrients in the rumen of growing kids. Eight Boer goats (38.2 ± 3.0 kg) were used. The treatments were arranged in a split-plot Latin square design with grain sources (barley or corn) forming the main plots (squares). Grain processing methods and levels of protein degradability formed the subplots in a 2 × 2 factorial arrangement for a total of 8 dietary treatments. The grain processing method was rolling for barley and cracking for corn. Levels of protein degradability were obtained by feeding untreated soybean meal (SBM) or heat-treated soybean meal (HSBM). Each experimental period lasted 21 d, consisting of a 10-d adaptation period, a 7-d digestibility determination period, and a 4-d rumen evacuation and sampling period. Kids fed with corn had higher purine derivatives (PD) excretion when coupled with SBM compared with HSBM and the opposite occurred with barley-fed kids ( ≤ 0.01). Unprocessed grain offered with SBM led to higher PD excretion than with HSBM whereas protein degradability had no effect when processed grain was fed ( ≤ 0.03). Results of the current experiment with high-concentrate diets showed that microbial N synthesis could be maximized in goat kids by combining slowly fermented grains (corn or unprocessed grains) with a highly degradable protein supplement (SBM). With barley, a more rapidly fermented grain, a greater microbial N synthesis was observed when supplementing a low-degradable protein (HSBM).


Assuntos
Ração Animal/análise , Cabras/fisiologia , Hordeum/química , Biossíntese de Proteínas/efeitos dos fármacos , Rúmen/efeitos dos fármacos , Zea mays/química , Fenômenos Fisiológicos da Nutrição Animal , Animais , Dieta/veterinária , Carboidratos da Dieta/farmacologia , Suplementos Nutricionais/análise , Digestão/efeitos dos fármacos , Fermentação , Motilidade Gastrointestinal/efeitos dos fármacos , Cabras/microbiologia , Hordeum/metabolismo , Cinética , Nitrogênio/metabolismo , Rúmen/microbiologia , Rúmen/fisiologia , Glycine max/metabolismo , Zea mays/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...